Property taxation and efficiency scores of metropolitan municipalities in South Africa
Author | Jansen, A. |
DOI | https://doi.org/10.47348/AMTJ/V2/i1a3 |
Published date | 28 March 2022 |
Date | 28 March 2022 |
Citation | (2022) 2 AMTJ 42 |
Pages | 42-60 |
https://doi.org/10.47348/AMTJ/V2/i1a3 42
PROPERTY TAXATION AND EFFICIENCY SCORES OF
METROPOLITAN MUNICIPALITIES IN SOUTH AFRICA
FISCALITÉ FONCIÈRE ET SCORES D’EFFICACITÉ DES
COLLECTIVITÉS LOCALES MÉTROPOLITAINES EN
AFRIQUE DU SUD
MPOSTOS SOBRE A PROPRIEDADE E ÍNDICES DE
EFICIÊNCIA DOS MUNICÍPIOS METROPOLITANOS DA
ÁFRICA DO SUL
Ada Jansen*
Onesmo Kaiya Mackenzie†
Wynnona Steyn‡
JEL classif ication: H21, H71
ABSTRACT
Property taxation is a primary source of income for urban municipalities (metros),
particularly in South Africa. Property tax collection amongst metros varies, which
begs the question of whether differences in tax efficiency scores can be explained by
institutional fa ctors, or whether econom ic factors such as the size of th e tax base or the
ability to raise othe r revenues play a role. Th is article estimate s property tax ef ficiency
scores for eight South African metros and considers factors that affect these scores.
We use municipal data and apply the data envelopment analysis method to estimate
the efficiency scores for property taxation. This is followed by a Tobit regression to
evaluate the determinants of these scores. The results show that although metros
achieve relatively high efficiency scores, property tax collections can be improved.
In addition, economic indicators explain variations in eff iciency scores, but financial
management remains key to delivering municipal infrastructure.
Keywords: property taxation, metropolitan municipalities, tax efficiency
scores, DEA
RÉSUMÉ
La fiscalité foncière est la principale source de revenus des collectivités locales urbaines
(métros), particulièrement en Afrique du Sud. La collecte de la taxe foncière entre
les métros varie ce qui suscite la question de savoir si les différences dans les scores
d’efficacité foncière peuvent être expliquées par des facteurs institutionnels, ou si les
facteurs économiques tels que la taille de l’assiette fiscale ou la capacité de générer
d’autre revenus jouent un rôl e. Cet article fait une estima tion des scores d’effic acité de la
*Associate professor in the Department of Economics at Stellenbosch University: ada@sun.
ac.za.
† PhD student in the Department of Economics at Stellenbosch University: onymackenzie@
gmail.com.
‡ Economist, Macroeconomic Research Unit at the South African Revenue Service: wsteyn@
sars.gov.za.
(2022) 2 AMTJ 42
© Juta and Company (Pty) Ltd
PROPERTY TAXATION AND EFFICIENCY SCORES OF METROPOLITAN
MUNICIPALITIES IN SOUTH AFRICA 43
https://doi.org/10.47348/AMTJ/V2/i1a3
taxe foncière de huit métros sud-af ricains et analyse les fact eurs qui affectent ces sc ores.
Nous avons utili sé des données municipa les et avons appliqué un e méthode d’analyse de
l’enveloppe (DEA) d es données afin d’estimer les sc ores d’efficacité de la ta xe foncière.
Ceci est suivi d’une régression Tobit pour évaluer les déterminants de ces scores. Les
résultats mont rent que bien que les métros obtienn ent des scores relativement él evés, les
collectes de l a taxe foncière peuvent ê tre améliorées. De plus les i ndicateurs économiq ues
expliquent le s variations dans les score s d’effic acité, mais la gestion financière demeure
primordiale po ur la fourniture des infrastru ctures municipales.
Mots-clés: fiscalité foncière, collectivités locales (municipalités/communes)
métropolitaines, score d’efficacité fiscale, DEA
RESUMO
A contribuição predial é uma fonte primária de rendimento para os municípios
urbanos (áreas metropolitanas), particularmente na África do Sul. A cobrança de
impostos sobre a propr iedade varia entre as vári as áreas metropolitana s, o que levanta
a questão de saber se as diferenças de eficiência do imposto podem ser explicadas
por factores institucionais, ou se factores económicos tais como a dimensão da base
fiscal ou a capacidade de obter outras receitas desempenham um papel importante.
Este documento estima as pontuações de eficiência para o imposto predial em oito
áreas metropolitanas sul-africanas e considera factores que afectam estas pontuações.
Utilizamos dados municipais e aplicamos o método de análise do envelope de dados
(AED) para estimar as pontuações de eficiência para o imposto sobre a propriedade.
A isto segue-se uma regressão Tobit para avaliar os factores determinantes destas
pontuações. Os resultados mostram que embora as áreas metropolitanas alcancem
pontuações de eficiência relativamente elevadas, a colecta de impostos sobre a
propriedade pode ser melhorada. Além disso, os indicadores económicos explicam as
variações n os índices de eficiên cia, mas a gestão fina nceira continua a ser a chave pa ra
o fornecimento de infra-estr uturas municipais.
Palavras-chave: Impostos sobre a propriedade, municípios metropolitanos,
pontuação de ef iciência fiscal, AED
I INTRODUCTION
Urban municipalities are well known for their reliance on property
taxation as a local income source. This is mainly due to a higher level
of concentration of property wealth in urban areas which result in a
substantial property tax base (McCluskey & Franzsen, 2013, p. 159).
This is also the case in South Africa which has a three-tiered local
government str ucture comprising met ropolitan municipalities (metros),
district and local municipalities. Property taxation is collected by
metros and type B municipalities (that is, large towns, intermediate
cities, medium to small towns, and rural municipalities (Vacu, 2020,
p. 56). In absolute terms, metros collect a large amount of property
© Juta and Company (Pty) Ltd
Get this document and AI-powered insights with a free trial of vLex and Vincent AI
Get Started for FreeUnlock full access with a free 7-day trial
Transform your legal research with vLex
-
Complete access to the largest collection of common law case law on one platform
-
Generate AI case summaries that instantly highlight key legal issues
-
Advanced search capabilities with precise filtering and sorting options
-
Comprehensive legal content with documents across 100+ jurisdictions
-
Trusted by 2 million professionals including top global firms
-
Access AI-Powered Research with Vincent AI: Natural language queries with verified citations

Unlock full access with a free 7-day trial
Transform your legal research with vLex
-
Complete access to the largest collection of common law case law on one platform
-
Generate AI case summaries that instantly highlight key legal issues
-
Advanced search capabilities with precise filtering and sorting options
-
Comprehensive legal content with documents across 100+ jurisdictions
-
Trusted by 2 million professionals including top global firms
-
Access AI-Powered Research with Vincent AI: Natural language queries with verified citations

Unlock full access with a free 7-day trial
Transform your legal research with vLex
-
Complete access to the largest collection of common law case law on one platform
-
Generate AI case summaries that instantly highlight key legal issues
-
Advanced search capabilities with precise filtering and sorting options
-
Comprehensive legal content with documents across 100+ jurisdictions
-
Trusted by 2 million professionals including top global firms
-
Access AI-Powered Research with Vincent AI: Natural language queries with verified citations

Unlock full access with a free 7-day trial
Transform your legal research with vLex
-
Complete access to the largest collection of common law case law on one platform
-
Generate AI case summaries that instantly highlight key legal issues
-
Advanced search capabilities with precise filtering and sorting options
-
Comprehensive legal content with documents across 100+ jurisdictions
-
Trusted by 2 million professionals including top global firms
-
Access AI-Powered Research with Vincent AI: Natural language queries with verified citations

Unlock full access with a free 7-day trial
Transform your legal research with vLex
-
Complete access to the largest collection of common law case law on one platform
-
Generate AI case summaries that instantly highlight key legal issues
-
Advanced search capabilities with precise filtering and sorting options
-
Comprehensive legal content with documents across 100+ jurisdictions
-
Trusted by 2 million professionals including top global firms
-
Access AI-Powered Research with Vincent AI: Natural language queries with verified citations
